MATH 2060 TUTOI
Def. Let $I \subseteq \mathbb{R}$ be an interval, $f: I \rightarrow \mathbb{R}$ be a $f(n, c \in I$.

- We say that f is differentiable at $c \in I$ if

$$
f^{\prime}(c):=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \quad \text { exists }
$$

We call $f^{\prime}(c)$ the derivative of f at c.

- We say that f is diff. on I if $f^{\prime}(x)$ exists $\forall x \in I$.

Thu 6.2.4 (Mean Value The)
Suppose $\cdot f:[a, b] \rightarrow \mathbb{R}$ is cts $\quad(a<b)$

- $f^{\prime}(x)$ exists $\forall x \in(a, b)$

Then $\exists c \in(a, b)$ s.t.

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) .
$$

The 6.2.7 Let $f: I \rightarrow \mathbb{R}$ be diff. on an interval I. Then
a) f is increasing on $\Leftrightarrow f^{\prime}(x) \geqslant 0 \quad \forall x \in I$
b) f is decreasing on $I \Leftrightarrow f^{\prime}(x) \leq 0 \quad \forall x \in I$

Example ($\$ 6.1$ Ex 7)
Suppose that f is diff. at c and that $f(c)=0$.
Show that $g(x):=|f(x)|$ is diff. ate of $f^{\prime}(c)=0$.
Ans: $\forall x \neq c$,

$$
\frac{g(x)-g(c)}{x-c}=\frac{|f(x)|-|f(c)|}{x-c}=\operatorname{sgn}(x-c)\left|\frac{f(x)-f(c)}{x-c}\right|
$$

since $\quad f(c)=0$.
Here $\operatorname{sgn}(x)=\left\{\begin{array}{cl}1 & \text { if } x>0 \\ -1 & \text { if } x<0 \text {. }\end{array}\right.$
Then $\lim _{x \rightarrow c^{+}} \frac{g(x)-g(c)}{x-c}=\lim _{x \rightarrow c^{+}} \operatorname{sgn}(x-c)\left|\frac{f(x)-f(c)}{x-c}\right|=\left|f^{\prime}(c)\right|$

$$
\lim _{x \rightarrow c^{-}} \frac{g(x)-g(c)}{x-c}=\lim _{x \rightarrow c^{-}} \operatorname{sgn}(x-c)\left|\frac{f(x)-f(c)}{x-c}\right|=-\left|f^{\prime}(c)\right|
$$

Sine $\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}$ exists iff $\lim _{x \rightarrow c^{+}} \frac{g(x)-g(c)}{x-c}=\lim _{x \rightarrow c^{-}} \frac{g(x)-g(c)}{x-c}$,
so $g^{\prime}(c)$ exists iff $\left|f^{\prime}(c)\right|=-\left|f^{\prime}(c)\right|$

$$
\text { iff } \quad f^{\prime}(c)=0
$$

$\left(\xi_{6}, 1 E_{x}(3)\right.$
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is diff. at $c \in \mathbb{R}$, show that

$$
f^{\prime}(c)=\lim (n|f(c+1 / n)-f(c)|)
$$

However, show by example that the existeme of the limit of this seq. does not imply the existeme of $f^{\prime}(c)$

Aus: Since f is diff. at c,

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f^{\prime}(c)}{h}=f^{\prime}(c)
$$

Consider the seq $\left\langle h_{n} l, h_{n}:=\frac{1}{n}\right.$,
we have $h_{n} \neq 0$ and $\lim \left(h_{n}\right)=0$
By Sequential Criterion for Limits of f cns.

$$
\begin{aligned}
& \quad \lim _{n \rightarrow \infty} \frac{f\left(c+h_{n}\right)-f\left(c_{n}\right)}{h_{n}}=f^{\prime}(c) \\
& \text { i.e. } \quad f^{\prime}(c)=\lim _{n \rightarrow \infty} n\left[f\left(c+\frac{1}{n}\right)-f(c)\right]
\end{aligned}
$$

For the counterexample, one may consider the Dirichlet f ch

$$
f(x):= \begin{cases}1 & \text { if } x \in \mathbb{C} \\ 0 & \text { if } x \notin \mathbb{K}\end{cases}
$$

Then $\begin{aligned} n\left[f\left(c+\frac{1}{n}\right)-f(c)\right] & = \begin{cases}n(1-1) & \text { if } c \in \mathbb{Q} \\ n(0-0) & \text { if } c \notin \mathbb{K}\end{cases} \\ & =0\end{aligned} \quad \forall n \in \mathbb{N}$.
However, $f^{\prime}(c)$ DIVE for any $c \in \mathbb{R}$ sine f is discts everywhere

Example (§6.2 Ex)
Let $f:[a, b] \rightarrow \mathbb{R}$ be cts on $[a, b]$ and diff. on (a, b). Show that if $\lim _{x \rightarrow a} f^{\prime}(x)=A$,
then $f^{\prime}(a)$ exists and equal A.
Aus: Idea: By MVT, $\frac{f(x)-f(a)}{x-a}=f^{\prime}\left(c_{x}\right) \rightarrow A$
as $x \rightarrow a^{+}$

Let $\varepsilon>0$
Since $\lim _{x \rightarrow a} f^{\prime}(x)=A, \quad \exists \delta>0$ s.t.
if $x \in(a, b)$ and $0<|x-a|<\delta$,
we have $\left|f^{\prime}(x)-A\right|<\varepsilon$

Fix $x \in(a, b)$ s.t. $0<|x-a|<\delta$.
Apply Mean Value The to the interval $[a, x]$.
Then $\exists c_{x} \in(a, x)$ s.t.

$$
\frac{f(x)-f(a)}{x-a}=f^{\prime}\left(C_{x}\right)
$$

Note $0<C_{x}-a<x-a<\delta$.
Heme $\quad\left|\frac{f(x)-f(a)}{x-a}-A\right|=\left|f^{\prime}\left(c_{x}\right)-A\right|<\varepsilon$
Therefore $\lim _{\substack{x \rightarrow a \\ x \in[a, b]}} \frac{f(x)-f(a)}{x-a}=A$
Since a is the left end pt. of $[a, b]$, it means

$$
f^{\prime}(a)=A
$$

Example (§6.2 Ex 5)
Let $a>b>0$ and let $n \in \mathbb{N}$ satisfy $n \geqslant 2$.
Prove that $a^{1 / n}-b^{1 / n}<(a-b)^{1 / n}$

Ans: Divide $b^{1 / n}$ on both sides, we have

$$
\begin{aligned}
& \left(\frac{a}{b}\right)^{\frac{1}{n}}-1<\left(\frac{a}{b}-1\right)^{\frac{1}{n}} \\
& \left(\frac{a}{b}\right)^{\frac{1}{n}}-\left(\frac{a}{b}-1\right)^{\frac{1}{n}}<1
\end{aligned}
$$

This leads us to consider the f ch $f(x):=x^{\frac{1}{n}}-(x-1)^{\frac{1}{n}}$ for $x \geqslant 1$.
Let $f(x):=x^{\frac{1}{n}}-(x-1)^{\frac{1}{n}}$ for $x \geqslant 1$.
Then $f^{\prime}(x)=\frac{1}{n} x^{\frac{1}{n}-1}-\frac{1}{n}(x-1)^{\frac{1}{n}-1}$ for $x>1$. ($\left.f^{\prime}(1) D N E\right)$
Moreover, for $x>1$,

$$
\begin{aligned}
x & >x-1>0 \\
\Rightarrow & 0<x^{\frac{1}{n}-1}<(x-1)^{\frac{1}{n-1}} \quad \text { since } \frac{1}{n}-1<0 \\
\Rightarrow & f^{\prime}(x)<0
\end{aligned}
$$

As f is cts on $[1, x]$ and diff. on $(1, x)$).
MVT implies that $\exists C_{x} \in(1, x)$ s.t. Wish to apply

$$
\begin{array}{lll}
& \frac{f(x)-f(1)}{x-1}=f^{\prime}\left(c_{x}\right) & (<0) \\
\Rightarrow & f(x)<f(1) \\
\text { Heme } & f(x)<1 \quad \forall x>1
\end{array}
$$

The 6.2.7, but it requires diff. on whole interval,
so prove directly by MVT instead.

Finally, $a>b>0 \Rightarrow \frac{a}{b}>1$
and so $f\left(\frac{a}{b}\right)<1$,

$$
\begin{array}{ll}
\text { ie. } & \left(\frac{a}{b}\right)^{\frac{1}{n}}-\left(\frac{a}{b}-1\right)^{\frac{1}{h}}<1 \\
\Leftrightarrow & a^{\frac{1}{h}}-b^{\frac{1}{h}}<(a-b)^{\frac{1}{h}}
\end{array}
$$

Example (§6.2 Ex 10)
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(x):=\left\{\begin{array}{cc}
x+2 x^{2} \sin (1 / x) & \text { for } x \neq 0 \\
0 & \text { for } x=0 .
\end{array}\right.
$$

Show that $g^{\prime}(0)=1$, but in every neighbourhood of $0 g^{\prime}(x)$ takes on both tee and -re values.
Thus g is NOT monotonic in any neighourhood of 0 .
Ans: $x \neq 0$: By chain rule and product rule,

$$
\begin{aligned}
& g^{\prime}(x)=1+4 x \sin (1 / x)+2 x^{2} \cos (1 / x)\left(-x^{-2}\right) \\
&=1+4 x \sin (1 / x)-2 \cos (1 / x) \\
& x=0: \quad \lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0}(1+2 x \sin (1 / x))=1 \text { by Squeeze Thu }
\end{aligned}
$$

So $g^{\prime}(x)$ exists $\forall x \in \mathbb{R}$, i.e. g is diff. $\forall x \in \mathbb{R}$.
Now $g^{\prime}(0)=1$.
Want: $x_{n}, y_{n} \rightarrow 0$ s.t $\cos \left(\frac{1}{x_{n}}\right)=1, \cos \left(\frac{1}{y_{n}}\right)=-1$.
Let $\quad x_{n}=\frac{1}{2 n \pi} \quad, \quad y_{n}=\frac{1}{(2 n+1) \pi}$
Then $\quad g^{\prime}\left(x_{n}\right)=1+0-2=-1$

$$
g^{\prime}\left(y_{n}\right)=1+0+2=3
$$

Sine $x_{n}, y_{n} \rightarrow 0$, so $g^{\prime}(x)$ takes on both tue and -re values in every ubhd of 0 .

The last assertion follows immediately from Thy 6.2.7.

